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Characteristics of cylindrical ion trap
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Abstract

The characteristics of cylindrical ion trap (CIT) for a miniaturized mass spectrometer was investigated. The equation of motion for an ion
was derived, and the stability region in the CIT was calculated and compared with that in the Paul trap. As the result, the geometric relation
between the CIT and the Paul trap was obtained analytically, which is useful to easily analyze the stability of ion motion in the CIT. Through
the pseudo-potential approach, the stability space in the CIT was discussed qualitatively. The stability space which indicated the stability of
ion motion in space was quantitatively calculated by the equation of motion and analyzed. It was reconfirmed that the stability space was
dependent on the position of ion, differently from the Paul trap.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Quadrupole ion trap invented by Paul and Steinwedel[1]
has been widely applied to mass spectrometry[2,3], ion
cooling and spectroscopy[4–6], frequency standards[7,8],
quantum computing[9,10], and so on.

Ion trap mass spectrometer has developed through several
stages to their current stage of relatively high performance
and increasing popularity[2,3]. To apply to various objec-
tives, various geometries of ion trap for the mass spectrom-
eter have been suggested[11]. Specially, the cylindrical ion
trap (CIT) has received much attention of a number of re-
search groups because of several merits. The CIT is easier
to fabricate than the Paul trap which has hyperbolic sur-
faces[12–14]. And the relative simplicity and small size of
the CIT make it an ideal candidate for miniaturization. With
these interests, many groups in, such as Purdue University
[15,16] and Oak Ridge National Laboratory[17,18] have
researched on the applications of the CIT to a miniaturized
mass spectrometer.
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The CIT has a simple geometry, but the equation of motion
is complicate and difficult to solve analytically. Berilan and
Audoin[12] suggested the equation of motion and described
the potential distribution in the CIT. Bonner et al.[13] also
suggested the potential distribution in the CIT expressed
with modified Bessel functions and triangular functions.

The Paul trap has hyperbolic surfaces, but the equation
of motion is given by the Mathieu equation which solution
is well known. Therefore, it is very useful for the analysis
of the ion motion in the CIT to know the geometric relation
between the CIT and the Paul trap which gives the same
characteristics for the motion of an ion in the traps.

In this paper, we derived the equations of ion motion
in the CIT, and calculated the stability region for the ion
motion. Also, the geometric relation between the CIT and
the Paul trap was obtained. Using the approaches with
pseudo-potential and the equations of ion motion, the spatial
stability of ion motion in the CIT was discussed.

2. Equation of motion

The CIT is the ion trap with cylindrical geometry as shown
in Fig. 1. The CIT is composed of a ring and two end cap
electrodes facing each other in thez-axis. z1 expresses the
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Fig. 1. The cross-sectional view of the CIT in ther–z-plane.

distance from the center of the CIT to the end cap andr1
the distance from the center of the CIT to the nearest ring
surface. To obtain the equation of motion in the CIT, we
selected the potential distribution suggested by Bonner et al.
[13];

Φ(r, z)= 4Φ0

∞∑
n=0

(−1)n

(2n + 1)π

I0(rln)

I0(r1ln)
cos(lnz),

ln = (2n + 1)π

2z1
(1)

where I0 is 0th modified Bessel function of the 1st kind.
Based on this expression, we derived the equation of motion
of an ion in the CIT.

The equation of motion for a singly charged positive ion
is given by

d2�r
dt2

= − e

m
∇Φ (2)

wherem is the ion mass ande is the electronic charge. When
both the end-cap electrodes are grounded and an electric
potential ofΦ0 = U + V cos(Ωt + γ) is applied to the ring
electrode,Eq. (2)can be written as

d2r

dt2
= − 2e

mz1
(U + V cosΩt)

∞∑
n=0

I1(rln)

I0(r1ln)
cos(nπ) cos(lnz)

(3)

d2z

dt2
= − 2e

mz1
(U + V cosΩt)

×
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n=0

I0(rln)

I0(r1ln)
cos((n + 1)π) sin(lnz) (4)

whereU andV are dc and rf voltages, respectively.Ω is the
angular frequency of the rf voltage with an initial phase angle
of γ. In Eqs. (3) and (4), γ was set to zero for simplicity.
Defining the parameters for the CIT, such that

τ = 1

2
Ωt, αr = 8eU

mz2
1Ω

2
, ξr = −4eU

mz2
1Ω

2
,

αz = −16eV

mz2
1Ω

2
, ξz = 8eV

mz2
1Ω

2
(5)

Eqs. (3) and (4)become

d2r

dτ2
+ (αr − 2ξr cos 2τ)R(r, z) = 0,

d2z

dτ2
+ (αz − 2ξz cos 2τ)Z(r, z) = 0, (6)

whereR(r, z) andZ(r, z) are given by

R(r, z)= z1

∞∑
n=0

I1(rln)

I0(r1ln)
cos(nπ) cos(zln),

Z(r, z)= z1

2

∞∑
n=0

I0(rln)

I0(r1ln)
cos(nπ) sin(zln) (7)

To obtain the numerical solution of the Mathieu equation
of the Paul trap and equation of ion’s motion in the CIT, 4th
Runge–Kutta method was used. Since there exists no force in
the ideal center of the CIT, the ion’s initial position wasri =
1×10−9 m, zi = 1×10−9 m to avoid the ideal center of the
CIT. The ion’s velocities were zero for ther-direction and the
z-direction. The ion’s stability was obtained by calculating
the equation of ion’s motion with 4th Runge–Kutta method.

Fig. 2shows the stability regions for the Paul trap and the
CIT. The solid lines and the open diamonds are the stability
regions for the Paul trap. The solid lines were calculated
from the stability condition of the Mathieu equation for
the Paul trap[2]. The open diamonds were obtained from
the numerical solution of the equation of motion in the
Paul trap. As shown in the figure, the open diamonds well
matched with the solid lines. From this, we confirmed that
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Fig. 2. The stability regions. The solid lines were calculated from the
stability condition of the Mathieu equation for the Paul trap, the open
diamonds and the open circles were obtained from the numerical solutions
of the equation of motion in the Paul trap and the CIT, respectively. The
geometry of the CIT was fixed atr1 = 2.5 andz1 = 2.88 mm.
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the calculation of the stability region from the numerical
solution of the equation of motion in the trap could be suc-
cessfully applied to the determination of the stability region
in the trap. The open circles were calculated from the nu-
merical solution ofEqs. (3) and (4)for the CIT. The stability
region of the CIT was very similar to the stability region of
the Paul trap. However, the stability region of the CIT was
expanded whenaz value increased in negative. InEqs. (3)
and (4), the R(r, z) and Z(r, z) are consisted of modified
Bessel functions. And the relation betweenR(r, z) andZ(r,
z) is different from the relation between ther and thez in
the Mathieu equation for the Paul trap, which are indepen-
dent of each other. However, the positions ofr andz in the
CIT depend on each other, i.e.,R(r, z) is not independent of
Z(r, z). The high-order effect of modified Bessel function
in R(r, z) andZ(r, z) should cause the expansion of stability
region in high dc voltage. Even though there was a little dif-
ference in the negativeaz region, the stabilities in thez-axis
(az = 0) well matched each other. The mass spectrometer
using mass selective instability scan method uses the condi-
tion of az = 0 as the operation line. In that case, the stability
along thez-axis in the CIT can be interpreted by the stabil-
ity condition of the Paul trap. This approach was treated by
Benilan and Audoin[12]. They approximated the term in
their equation of motion, which corresponds toR(r, z) and
Z(r, z) in Eq. (6), to r andz, respectively. Based on this ap-
proximation, they proposed the geometric relation between
the CIT and the Paul trap. However, the high-order inR(r,
z) andZ(r, z) cannot be neglected, and their approximation
gives large difference when the high-order terms inR(r, z)
andZ(r, z) cannot be negligible. Therefore, we derived the
concrete expression for the geometric relation between the
Paul trap and the CIT usingEq. (6) in this paper.

3. Geometric relation

At first, to understand the characteristics of equation of
motion in the CIT, we took six terms in the series as follows,
which was enough since the higher terms were negligible.
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If we assumez 
 z1, in the center region, cos(zln) and
sin(zln) can be approximated by

cos(zln) ≈ 1 − 1

2!
(zln)

2, sin(zln) ≈ zln − 1

3!
(zln)

3 (9)

respectively. Therefore,Eq. (4)becomes

d2z

dt2
− eπ

mz2
1

[
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24
B

(
z
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)2
]
(U + V cos(Ωt))z = 0

(10)

where,

A ≡ I0(rl0)
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Again, Eq. (10)can be expressed by

d2z

dτ2
+ (αzη − 2ξzη cos(2τ))z = 0,

η = π

4

[
A − π2

24
B

(
z

z1

)2
]

(12)

When we define trap parameters as follows:

az,CIT = αzη, qz,CIT = ξzη (13)

Eq. (12)becomes

d2z

dτ2
+ (az,CIT − 2qz,CIT cos(2τ))z = 0 (14)

Eq. (14)is very similar form to the Mathieu equation for the
Paul trap. This equation is applicable in the condition ofz 

z1. When an ion is located far from the center of the CIT,
the high-order terms ofB should be considered. However,
ions are trapped near the center of ion trap in most situation.
Therefore,r ≈ 0, thenA andB are nearly constants as can
be known inEq. (11). Becausez ≈ 0, η can be expressed by

η = π

4
A (15)

andη has a constant value. The constantη means that trap
parameters of the CIT,az,CIT and qz,CIT, are only depen-
dent on dc voltage and rf voltage. Therefore,η gives the
unique geometry of the Paul trap corresponding to the CIT.
Of course, when the ions are located far from the center of
the CIT, η value is not constant andη value changes with
the position of ion. However, we confirmed thatη value was
a constant value in the condition ofz < z1/10.

When theη is the constant,Eq. (14)is perfectly same to
the Mathieu equation of the Paul trap. From this fact, there
exists the relation as follows:

qz,CIT = ξzη = qz, r0 = z1

√
2

πA
(16)

whereqz is the trap parameter of the Paul trap,r0 is the
distance between center of the Paul trap and ring electrode
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Fig. 3. The comparison ofξz obtained by numerical calculation of equation of motion for an ion that byEq. (12).

and z1 is the distance between the center of the CIT and
an end-cap electrode, respectively.Eq. (16)means that the
relation between the geometry of the Paul trap and of the
CIT, i.e.,Eq. (16)tells us that we can consider the stability
in the Paul trap withr0 given byEq. (16)if we want to know
the stability of ion motion in the CIT withz1. Also,Eq. (16)
can be obtained by potential distribution usingEqs. (8), (9)
and (15).

The validity ofEqs. (14) and (16)could be check by ion’s
instability in Fig. 3. In the Paul trap, ifr0 is known, then the
geometry of the Paul trap is uniquely determined. However,
even if thez1 value is fixed, the CIT may have variousr1
values according to theη values inEq. (12). Therefore,ξz in
Eq. (13)has different value for eachµ (=r1/z1) value which
expresses geometries of the CIT.Fig. 3 shows theξz corre-
sponding toqz,CIT = 0.908. The solid line and open circles
express theξz obtained by calculatingEqs. (6) and (14),
respectively. The results calculatedEqs. (6) and (14)were
perfectly coincided with each other inµ < 1.1. Although
the results ofFig. 3 do not coincide well with each other
µ < 1.1, the results have a similar tendency, i.e., when the
geometry of the CIT isµ < 1.1, the potential distribution
and equation of motion of the CIT can treated as those of
the Paul trap with the geometric relation given byEq. (16).
Actually, this might be the reason that most reported opti-
mum geometries of the CIT were less thanµ = 1, they tried
to find the geometry of the CIT corresponding to the Paul
trap [15–18]. Therefore, the geometric relation inEq. (16)
can be well applied to actual mass spectrometer.

4. Pseudo-potential

Pseudo-potential is the time-averaged potential applied to
an ion in the ion trap. The pseudo-potential of the Paul trap

was suggested by Dehmelt[19]. The pseudo-potential of the
CIT also could be obtained by the same method. The ion’s
amplitudez of trajectory in the CIT can be replaced by a
sum of two amplitudes,Z, representing the secular motion
andδ, the micro motion, as follows:

z = Z + δ (17)

With the additional assumptions (i)δ 
 Z and (ii) dδ/dτ �
dZ/dτ Eq. (12)yields

d2δ

dτ2
= π

2
AξzZ cos(2τ) − π3

48
Bξz

Z3

z2
1

cos(2τ) (18)

Assuming, further, thatαz 
 ξz and Z is constant over
a period of high-frequency rf oscillation,Eq. (18) can be
integrated to give

δ = −π

8
ξzρZ cos(2τ) (19)

Substituting inEq. (17)for δ from Eq. (19)we obtain

z = Z − π

8
ξzρZ cos(2τ), ρ = A − π2

24
B
Z2

z2
1

(20)

whereρ is different fromη. ρ consists of the amplitude of
secular motion andη consists of that of whole trajectory
with secular motion and micro motion. Also, when thez
in Eq. (10) is substitute forz from Eq. (20), the average
d2Z/dτ2 can be written as〈
d2Z

dτ2

〉
= −π

4
AαzZ + π3

96
Bαz

(
Z

z1

)2

Z

+ 3π5

12288
Bαzξ2

zρ
2
(
Z

z1

)2

Z − π2

32
Aξ2

zρZ

+ 3π4

768
Bξ2

zρ

(
Z

z1

)2

Z + 3π6

196608
Bξ4

zρ
3
(
Z

z1

)2

Z

(21)
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Fig. 4. Pseudo-potential of CIT atr = 0. Thez1 and m/z were fixed at 2.88 mm and 100 Th, respectively. The rf frequency and rf voltage were fixed at
2 MHz and 150 V, respectively.

Then, the average of the acceleration d2δ/dτ2 over a period
of rf voltage is zero. For no dc bias condition, that is,αz =
0, we obtain〈
d2Z

dt2

〉
= − π2

128
Aξ2

zρΩ
2Z

+ π4

384

(
Z

z

)2 [
3

8
ξ2
zρ + 3π2

2048
ξ4
zρ

3
]

BΩ2Z (22)

Following d2z/dt2 = −(e/m)∇Φ, the average force on an
ion of massm and chargee is

m

〈
d2Z

dt2

〉
1 rf cycle

= −e
∂Dz

∂z
(23)

whereDz is the depth of the pseudo-potential well in which
ions oscillate in thez-direction. UsingEqs. (22) and (23),
theDz can be expressed as

Dz =
∫ Z=z

Z=0

∂Dz

∂Z
dZ = mq2

z,CITΩ
2z2

16e
+ H.O. (24)

H.O.=
(m
e

) π6

256· 1024

[
−1

4
A3B + π2

2 · 24
A2B2

(
z
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− 3π4

8 · 242
AB3

(
z

Z1

)4

+ π6

10 · 243
B4

(
z

Z1

)6
]

× ξ4
zΩ

2
(

z

Z1

)2

z2 (25)

When a time-varying rf voltage was applied to CIT,
Eq. (24) provided the pseudo-potential of CIT. The
pseudo-potential of CIT consisted of two terms; the one
was the same to the pseudo-potential of Paul trap and the

other was the high-order terms inEq. (25). The high-order
terms were negligible since the value ofH.O. in Eq. (24)
had a difference less than 2% compared with noH.O. That
is to say,Eq. (24)could be approximated to

Dz = mq2
z,CITΩ

2z2

16e
(26)

whereqz,CIT was already defined inEq. (13). Whenη is con-
stant,Eq. (14)is the perfectly same to the Mathieu equation
and the geometric relation can be obtained, as mentioned
above. And, the pseudo-potential of CIT is the same form
to that of Paul trap. Even ifη is not constant, the expression
is the perfectly same to the expression for constantη. The
pseudo-potentials of CIT inFig. 4 represents that the shape
of pseudo-potentials of CIT is almost the same to that of Paul
trap. The pseudo-potentials of the CIT show the potential
well as like harmonic oscillator near the center of the CIT.
However, the potential shape has some different slope com-
pared with that of harmonic oscillator when an ion is located
at far from the center of CIT. It means thatη is not a constant
when the position of ion is getting far from the center of CIT.
Therefore, the value of trap parameter varies with the ion’s
distance from the center of CIT. Also, the change of trap
parameter induces the variation of ion’s stability. Therefore,
the ion’s stability depends on ion’s position in CIT, which is
the big difference from Paul trap. Also, this dependence gen-
erates the spatial region for ion stability, we called stability
space, in CIT. The rigorous calculation usingEq. (6) indi-
cated also the existence of stability space as shown inFig. 5.

5. Stability space

Fig. 5 shows a quarter area of stability space calculated
by Eqs. (3) and (4)as the functions ofµ. The distance
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Fig. 5. The stability spaces. Ther1 was fixed 2.5 mm, and thez1 was fixed at 2.00, 2.88 and 3.2 mm for (a), (b) and (c), respectively. Theqz,CIT was 0.1,
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between the center of the CIT and the ring electrode,r1,
was fixed at 2.5 mm andµ were 1.25, 0.868 and 0.781,
respectively. When a rf voltage applied to the ring electrode
increased, the stability space forz-direction decreased. In
spite of decreasing the stability space for thez-direction,
the stability space forr-direction was not decreased. This
behavior agreed well with the results by Belian and Audoin
[12] using Bessel functions and hyper triangular functions.
Specially, the size of stability space for thez-direction was
very small at highqz. In the Paul trap, an ion is stable up to
an ejection rf voltage according toqz = 0.908. Only when
a rf voltage reaches the ejection voltage, an ion becomes
unstable and the ion ejects from the Paul trap. Our results
indicated that an ion in the CIT became unstable before
a rf voltage reached the ejection voltage. When the mass
selective instability scan method is used to mass spectrom-
eter constitute of the CIT, this result shows that ions in the
CIT are ejected before a rf voltage reaches ejection voltage
corresponding toqz,CIT = 0.908. This effect should cause a

poor resolution of mass spectrum of CIT compared with that
of commercial ion trap[20–23]. Therefore, the poorer reso-
lution of CIT than that of commercial ion trap is an intrinsic
characteristic.

6. Conclusion

The ion stability in cylindrical ion trap was investigated.
At first, the equation of motion in CIT was derived by the
modified Bessel function and triangular function. The equa-
tions of motion forr- andz-directions could not be solved
analytically since these are complicate coupled each other.
The 4th Runge–Kutta method was adopted to calculate nu-
merically the stability region in CIT. The stability region of
CIT was very similar to that of Paul trap. The simple geo-
metric relation between Paul trap and CIT (r0 = z1

√
2/πA)

was suggested, which makes consider the CIT as Paul trap
in the case ofµ < 1.1. Thus, the ion motion in CIT could
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be easily expected as like that in Paul trap. Also, this rela-
tion supports the reason why previous reported geometries
of CIT were nearµ ≈ 0.9. The pseudo-potential approach
provides that the pseudo-potential of CIT had a similar shape
of that of Paul trap. The dependence of ion stability on the
ion position in CIT, the stability space, was calculated by
solving the equation of ion motion, and degradation of the
resolution of mass spectrum might be an inherent character-
istics of CIT due to the stability space.
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