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Abstract

The characteristics of cylindrical ion trap (CIT) for a miniaturized mass spectrometer was investigated. The equation of motion for an ion
was derived, and the stability region in the CIT was calculated and compared with that in the Paul trap. As the result, the geometric relation
between the CIT and the Paul trap was obtained analytically, which is useful to easily analyze the stability of ion motion in the CIT. Through
the pseudo-potential approach, the stability space in the CIT was discussed qualitatively. The stability space which indicated the stability of
ion motion in space was quantitatively calculated by the equation of motion and analyzed. It was reconfirmed that the stability space was
dependent on the position of ion, differently from the Paul trap.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction The CIT has a simple geometry, but the equation of motion
is complicate and difficult to solve analytically. Berilan and
Quadrupole ion trap invented by Paul and Steinwégtl Audoin[12] suggested the equation of motion and described

has been widely applied to mass spectromg®3], ion the potential distribution in the CIT. Bonner et 3] also
cooling and spectroscofgy—6], frequency standards,8], suggested the potential distribution in the CIT expressed
quantum computingd,10], and so on. with modified Bessel functions and triangular functions.

lon trap mass spectrometer has developed through several The Paul trap has hyperbolic surfaces, but the equation
stages to their current stage of relatively high performance of motion is given by the Mathieu equation which solution
and increasing popularitj2,3]. To apply to various objec- is well known. Therefore, it is very useful for the analysis
tives, various geometries of ion trap for the mass spectrom- of the ion motion in the CIT to know the geometric relation
eter have been suggestdd]. Specially, the cylindrical ion  between the CIT and the Paul trap which gives the same
trap (CIT) has received much attention of a number of re- characteristics for the motion of an ion in the traps.
search groups because of several merits. The CIT is easier In this paper, we derived the equations of ion motion
to fabricate than the Paul trap which has hyperbolic sur- in the CIT, and calculated the stability region for the ion
faces[12—-14] And the relative simplicity and small size of motion. Also, the geometric relation between the CIT and
the CIT make it an ideal candidate for miniaturization. With the Paul trap was obtained. Using the approaches with
these interests, many groups in, such as Purdue Universitypseudo-potential and the equations of ion motion, the spatial
[15,16] and Oak Ridge National Laboratof¢7,18] have stability of ion motion in the CIT was discussed.
researched on the applications of the CIT to a miniaturized
mass spectrometer.

2. Equation of motion
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end-cap electrode Eqs. (3) and (4)Jec0me
ring electrode

. 2,
/ (ij 5 + (0r — 25, COS2)R(r, 2) = 0,

2
e ° 4 (a, — 26,008 2)Z(r, 7) = 0, (6)

whereR(r, 2) andZ(r, 2) are given by

U+VcosQt

R(r, z)—uz 1) cosnx) cog,),

| IO( 1ln
= z Io(rl .
Z(r,z) = —lZM cosnn) sin(d,) (7)
Fig. 1. The cross-sectional view of the CIT in thez-plane. 2 n=0 lo(raln)
distance from the center of the CIT to the end cap end To obtain the numerical solution of the Mathieu equation

the distance from the center of the CIT to the nearest ring of the Paul trap and equation of ion’s motion in the CIT, 4th
surface. To obtain the equation of motion in the CIT, we Runge—Kutta method was used. Since there exists no force in
selected the potential distribution suggested by Bonner et al.the ideal center of the CIT, the ion’s initial position was=

[13]; 1x107°m,z; = 1x 10~2m to avoid the ideal center of the
Il CIT. The ion’s velocities were zero for thedirection and the
D(r,z) = 4@02 % codl,z), z-direction. The ion’s stability was obtained by calculating
w0 @1+ D lo(ral) the equation of ion’s motion with 4th Runge—Kutta method.
(2n +Dm Fig. 2shows the stability regions for the Paul trap and the
In= 27 (1) CIT. The solid lines and the open diamonds are the stability

regions for the Paul trap. The solid lines were calculated
from the stability condition of the Mathieu equation for
the Paul trag2]. The open diamonds were obtained from
the numerical solution of the equation of motion in the
Paul trap. As shown in the figure, the open diamonds well

wherelg is Oth modified Bessel function of the 1st kind.
Based on this expression, we derived the equation of motion
of an ion in the CIT.

The equation of motion for a singly charged positive ion

is given b _ - . )
dz? y matched with the solid lines. From this, we confirmed that
r e
— =——Vo® 2
dr? m @) 0.2
wheremis the ion mass anelis the electronic charge. When '
both the end-cap electrodes are grounded and an electric
potential of®@g = U + V cog§2r + ) is applied to the ring
electrode Eq. (2)can be written as 0.0
d?r 2e = 1(rl)
— = —— (U + V coss2t ———— co9nm)cogl,z
dr? ' ),Z;)Io(rlln) ) Coshn) 0.2
(3)
d2Z 2e 0.4
— = ———(U + V cos$2t :
dr? le( )
o
In(rl . .
x ZL;) cog(n + 1)) sin(l, 2) (4) 06 Mathieu Eq.
=3 lo(raly) o Paul trap
whereU andV are dc and rf voltages, respectivedy.is the o CIT
angular frequency of the rf voltage with an initial phase angle ol v v N\
of y. In Egs. (3) and (4)y was set to zero for simplicity. 00 02 04 06 08 10 12 14
Defining the parameters for the CIT, such that q
1 8eU —4eU . o .

T==80t o = ey & = oy Fig. 2. The stability regions. The solid lines were calculated from the
2 mZ%Q mZ%Q stability condition of the Mathieu equation for the Paul trap, the open
—16eV 8eV diamonds and the open circles were obtained from the numerical solutions

oy = m, & = > (5) of the equation of motion in the Paul trap and the CIT, respectively. The
1‘Q mz%[) geometry of the CIT was fixed atf = 2.5 andz; = 2.88 mm.
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the calculation of the stability region from the numerical
solution of the equation of motion in the trap could be suc-
cessfully applied to the determination of the stability region
in the trap. The open circles were calculated from the nu-
merical solution ofqgs. (3) and (4jor the CIT. The stability
region of the CIT was very similar to the stability region of
the Paul trap. However, the stability region of the CIT was
expanded whem, value increased in negative. Egs. (3)
and (4) the R(r, 2 and Z(r, 2) are consisted of modified
Bessel functions. And the relation betwefr, 2) and Z(r,

2) is different from the relation between theand thez in

the Mathieu equation for the Paul trap, which are indepen-
dent of each other. However, the positions @ndz in the
CIT depend on each other, i.&(r, 2) is not independent of
Z(r, 2). The high-order effect of modified Bessel function
in R(r, 2) andZ(r, 2) should cause the expansion of stability
region in high dc voltage. Even though there was a little dif-
ference in the negative, region, the stabilities in the-axis
(a; = 0) well matched each other. The mass spectrometer

using mass selective instability scan method uses the condl—d

tion of ¢, = 0 as the operation line. In that case, the stability
along thez-axis in the CIT can be interpreted by the stabil-
ity condition of the Paul trap. This approach was treated by
Benilan and Audoin12]. They approximated the term in
their equation of motion, which correspondsR, 2z) and

Z(r, 2) in Eq. (6) tor andz, respectively. Based on this ap-
proximation, they proposed the geometric relation between
the CIT and the Paul trap. However, the high-ordeR(n,

2) andZ(r, 2) cannot be neglected, and their approximation
gives large difference when the high-order term&(n, 2)
andZ(r, z) cannot be negligible. Therefore, we derived the
concrete expression for the geometric relation between the
Paul trap and the CIT usinigg. (6)in this paper.

3. Geometric relation

At first, to understand the characteristics of equation of
motion in the CIT, we took six terms in the series as follows,
which was enough since the higher terms were negligible.

[e.¢]

Z (=" Io(rly)
= (2n + Dym Io(rily)
N 1 Ip(rlp) 1 Io(rly)
N [E Io(rilo)  3n Io(rlm}
N [i Io(rlz) 1 10(”3)]
57 Io(rilz) 7 Io(ril3)
1 Io(rla) 1 Io(rls)

(8)

al }

If we assumez < z1, in the center region, cadf) and
sin(@,) can be approximated by

9 Io(rilg) 11 Io(r1ls)

1 . 1
cosd,) ~ 1— 5@”)2, sin@,) ~ 2, — §<zln>3 9)

27

respectively. Therefor&q. (4)becomes
[A -

_ Io(rlo) — Io(rly) | Io(rl)

" Io(rilo) T Io(rily) | Io(ril2)
Io(rly) —  Io(rls)
Io(r1ls) Io(rils)’

Io(rlo) 3 o(rly)

Io(r1lo) To(r1l1)

3 lo(rly) 173 Io(rls)

lo(rila) lo(r1ls)

Again, Eg. (10)can be expressed by

72

24

e

e

Z

8(2

<1

d?z 2

pr i ) (U+Vcogd2t)z=0
(10)

where,

In(rl3)
Io(ral3)

3 lo(rl2)
Io(r1l2)

3 lo(rl3)
Io(r1l3)

(11)

B

+9

+ (azn — 26;mco921))z =0

iP5 )]

When we define trap parameters as follows:

dr?

2

b4
A—
24

Z

21

n= (12)

a; it = oz, qg.cr =& (13)

Eqg. (12)becomes
d2
dz2
Eq. (14)is very similar form to the Mathieu equation for the
Paul trap. This equation is applicable in the condition ef

z1. When an ion is located far from the center of the CIT,
the high-order terms oB should be considered. However,
ions are trapped near the center of ion trap in most situation.
Thereforey ~ 0, thenA andB are nearly constants as can
be known inEq. (11) Because ~ 0, n can be expressed by

(15)

+ (a;,cT — 29;,ciT €0821))z =0 (14)

A
4

andn has a constant value. The constanmheans that trap
parameters of the ClTa; cit and g, cit, are only depen-
dent on dc voltage and rf voltage. Thereforegives the
unigue geometry of the Paul trap corresponding to the CIT.
Of course, when the ions are located far from the center of
the CIT, n value is not constant angl value changes with
the position of ion. However, we confirmed thatalue was
a constant value in the condition of< z1/10.

When they is the constant=q. (14)is perfectly same to
the Mathieu equation of the Paul trap. From this fact, there
exists the relation as follows:

[2
GCT=&N=q;, Fro=21/
A

whereq, is the trap parameter of the Paul trap,is the
distance between center of the Paul trap and ring electrode

(16)
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Fig. 3. The comparison of, obtained by numerical calculation of equation of motion for an ion thaEfy (12)

and z; is the distance between the center of the CIT and was suggested by Dehmégl]. The pseudo-potential of the
an end-cap electrode, respectivety. (16)means that the  CIT also could be obtained by the same method. The ion’s
relation between the geometry of the Paul trap and of the amplitudez of trajectory in the CIT can be replaced by a
CIT, i.e.,Eq. (16)tells us that we can consider the stability sum of two amplitudesZ, representing the secular motion
in the Paul trap withig given byEq. (16)if we want to know andé, the micro motion, as follows:

the stability pf ion motion ir_] the_ CI_T w_itlzl. Also, Eq. (16) =748 (17)

can be obtained by potential distribution usiggs. (8), (9)

and (15) With the additional assumptions i)« Z and (ii) d&s/dt >
The validity ofEgs. (14) and (16)ould be check by ion’s ~ dZ/dr Eq. (12)yields

instability in Fig. 3. In the Paul trap, ifg is known, then the d2s 73 73

geometry of the Paul trap is uniquely determined. However, 5 = EA&Z cog27) — 4—8|3§zz—2 cog27) (18)

even if thez; value is fixed, the CIT may have various 1

values according to thevalues inEq. (12) Thereforeg, in Assuming, further, thatr, < §; and Z is constant over

Eq. (13)has different value for eagh (=r1/z;) value which @ period of high-frequency rf oscillatioftq. (18) can be

expresses geometries of the CFig. 3 shows the:, corre- integrated to give

sponding tag,; cit = 0.908. The solid line and open circles
express the, obtained by calculatindegs. (6) and (14)

respectively. The results calculatégys. (6) and (14yvere  gypstituting inEq. (17)for § from Eq. (19)we obtain

5= —%szpz cos27) (19)

perfectly coincided with each other jim < 1.1. Although 2 g2
the results ofFig. 3 do not coincide well with each other ;- 7 _ z&pz cos2r), p=A-— ”_B_2 (20)
u < 1.1, the results have a similar tendency, i.e., when the 8 24 73

geometry of the CIT ig: < 1.1, the potential distribution  \yhere is different fromy. p consists of the amplitude of
and equation of motion of the CIT can treated as those of secylar motion and) consists of that of whole trajectory
the Paul trap with the geometric relation givenfby. (16) with secular motion and micro motion. Also, when the

Actually, this might be the reason that most reported opti- jn Eq. (10)is substitute forz from Eq. (20) the average
mum geometries of the CIT were less thar= 1, they tried d2Z/d<2 can be written as
to find the geometry of the CIT corresponding to the Paul 5
trap [15—-18] Therefore, the geometric relation Ey. (16) dZ_Z _ _zAa 74 njBa A 7
can be well applied to actual mass spectrometer. d2/~ 4 ¢ 9% ‘\z1
37° 2o (Z 2 .,
B — | Z— ZA&pZ
T 12088 %5 (m) 32" 5er
37t Z\? 378 Z\?
+ —_Bg? (—) 7+ B43<—) z
Pseudo-potential is the time-averaged potential applied to 768 5P 71 196608 520 71
an ion in the ion trap. The pseudo-potential of the Paul trap (22)

4. Pseudo-potential
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Fig. 4. Pseudo-potential of CIT at= 0. Thez; and m/z were fixed at 2.88 mm and 100 Th, respectively. The rf frequency and rf voltage were fixed at
2MHz and 150V, respectively.

Then, the average of the acceleratidd/diz2 over a period  Other was the high-order terms k. (25) The high-order

of rf voltage is zero. For no dc bias condition, thatds,= terms were negligible since the value fO. in Eq. (24)
0, we obtain had a difference less than 2% compared with-h®. That
is to say,Eq. (24)could be approximated to
d??z\ _ 7° AE2p 227 MR - 2222
a2 |~ 128 < Do — % (26)

2
+ ”_4 <§> Ffzp + 3_”254;)3} B27Z (22) whereq, ¢t was already defined iqg. (13) Whenp is con-

384\ z 87" 2048 stant,Eq. (14)is the perfectly same to the Mathieu equation
and the geometric relation can be obtained, as mentioned
above. And, the pseudo-potential of CIT is the same form
e to that of Paul trap. Even if is not constant, the expression
m <dZ_Z> _ _eaDz 23) is the perfectly same to the expression for constanthe

dr2 [ cycle 9z pseudo-potentials of CIT iRig. 4 represents that the shape
. of pseudo-potentials of CIT is almost the same to that of Paul
whereD; is the depth of the pseudo-potential well in which trap. The pseudo-potentials of the CIT show the potential
ions oscillate in thez-direction. UsingEgs. (22) and (23)  well as like harmonic oscillator near the center of the CIT.
the D, can be expressed as However, the potential shape has some different slope com-
Z=25p M2 - $2222 pared with that of harmonic oscillator when anion is located
D, = / ‘dz = —=CT7 * 4y o. (24) at far from the center of CIT. It means thais not a constant
z=0 9Z 16e when the position of ion is getting far from the center of CIT.
Therefore, the value of trap parameter varies with the ion’s
m 0 14 2 L, o z2)\? distance from the center of CIT. Also, the change of trap
H.O. = ( ) 356.1024 —4A B+ A“B ( ) parameter induces the variation of ion’s stability. Therefore,
the ion’s stability depends on ion’s position in CIT, which is
37t af 2 4 .z 6 the big difference from Paul trap. Also, this dependence gen-

8. 242 <21> ( ) erates the spatial region for ion stability, we called stability

5 space, in CIT. The rigorous calculation usikg. (6) indi-
x £427 ( z ) .2 (25) cated also the existence of stability space as showigirs.

Following c?z/dr? = —(e/m)V®, the average force on an
ion of massm and charges is

e

VA

When a time-varying rf voltage was applied to CIT, 5, Stability space
Eq. (24) provided the pseudo-potential of CIT. The
pseudo-potential of CIT consisted of two terms; the one  Fig. 5shows a quarter area of stability space calculated
was the same to the pseudo-potential of Paul trap and theby Egs. (3) and (4)as the functions ofx. The distance
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Fig. 5. The stability spaces. Thig was fixed 2.5 mm, and thg was fixed at 2.00, 2.88 and 3.2 mm for (a), (b) and (c), respectivelygTher was 0.1,
0.3, 0.5, 0.7 and 0.9 for square, hollow square, circle, hollow circle and diamonds. In (b) and (c), the minimum stability space value was lower. than 1

between the center of the CIT and the ring electrade, poor resolution of mass spectrum of CIT compared with that
was fixed at 2.5mm ang. were 1.25, 0.868 and 0.781, of commercial ion trap20—23] Therefore, the poorer reso-
respectively. When a rf voltage applied to the ring electrode lution of CIT than that of commercial ion trap is an intrinsic
increased, the stability space fedirection decreased. In  characteristic.

spite of decreasing the stability space for thdirection,

the stability space for-direction was not decreased. This

behavior agreed well with the results by Belian and Audoin 6. Conclusion

[12] using Bessel functions and hyper triangular functions.

Specially, the size of stability space for th@irection was The ion stability in cylindrical ion trap was investigated.
very small at highg;. In the Paul trap, an ion is stable up to At first, the equation of motion in CIT was derived by the
an ejection rf voltage according tg = 0.908. Only when modified Bessel function and triangular function. The equa-
a rf voltage reaches the ejection voltage, an ion becomestions of motion forr- andz-directions could not be solved
unstable and the ion ejects from the Paul trap. Our resultsanalytically since these are complicate coupled each other.
indicated that an ion in the CIT became unstable before The 4th Runge—Kutta method was adopted to calculate nu-
a rf voltage reached the ejection voltage. When the massmerically the stability region in CIT. The stability region of
selective instability scan method is used to mass spectrom-CIT was very similar to that of Paul trap. The simple geo-
eter constitute of the CIT, this result shows that ions in the metric relation between Paul trap and CF§ & z1/2/7A)

CIT are ejected before a rf voltage reaches ejection voltagewas suggested, which makes consider the CIT as Paul trap
corresponding tg, cit = 0.908. This effect should cause a in the case ofx < 1.1. Thus, the ion motion in CIT could
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be easily expected as like that in Paul trap. Also, this rela- [5] W.M. Itano, J.C. Bergquist, R.G. Hulet, D.J. Windeland, Phys. Rev.

tion supports the reason why previous reported geometries _ Lett. 59 (1987) 2732. _ _

of CIT were near ~ 0.9. The pseudo-potential approach [6] \Al.l\ﬁilziggb)lj.z\lz.gl-sielnzen, J.J. Bollinger, D.J. Wineland, Phys. Rev.
provides that the pseudo-potential of CIT had a similar shape (7 3. von Zanther, J. Abel, Th. Becker, M. Fries, E. Peik, H. Walther,
of that of Paul trap. The dependence of ion stability on the R. Holzwarth, J. Reichert, Th. Udem, T.W. Hansch, A.Yu. Nevsky,
ion position in CIT, the stability space, was calculated by M.N. Skvortsov, S.N. Bagayev, Opt. Commun. 166 (1999) 57.
solving the equation of ion motion, and degradation of the [8] R.J. Rafac, B.C. Young, J.A. Beall, W.M. Itano, D.J. Wineland, J.C.

. . . . Berquist, Phys. Rev. Lett. 85 (2000) 2462.
resolution of mass spectrum might be an inherent character [9] D. Kielpinski, V. Meyer, M.A. Rowe, C.A. Sackett, W.M. Itano, C.

istics of CIT due to the stability space. Monroe, D.J. Wineland, Science 291 (2001) 1013.
[10] A. Steane, C.F. Roos, D. Stevens, A. Mundt, D. Leibfried, F.
Schmidt-Kaler, R. Blatt, Phys. Rev. A 62 (2000) 042305.
[11] E.C. Beaty, J. Appl. Phys. 61 (1987) 2118.
[12] M.N. Benilan, C. Audoin, Int. J. Mass Spectrom. lon Phys. 11 (1973)
. 421.
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